- · 《冶金与材料》栏目设置[05/29]
- · 《冶金与材料》收稿方向[05/29]
- · 《冶金与材料》投稿方式[05/29]
- · 《冶金与材料》征稿要求[05/29]
- · 《冶金与材料》刊物宗旨[05/29]
冶金企业数字化转型——“虚”“实”相向,材
作者:网站采编关键词:
摘要:机械产品的设计与制造与成型工艺密切相关,成型工艺的优劣对产品的质量的影响至关重要,合金材料常见的成型工艺主要包括轧制、锻压、冲压、挤压、旋压、焊接、特种成形、粉末
机械产品的设计与制造与成型工艺密切相关,成型工艺的优劣对产品的质量的影响至关重要,合金材料常见的成型工艺主要包括轧制、锻压、冲压、挤压、旋压、焊接、特种成形、粉末冶金、增材制造、机加工及热处理等。随着生产加工水平的提高,对产品的精度、成本要求也越来越高,过去的依靠经验+试验的方法,进行模具制造和加工控制已越来越不能满足工程需要。以数字化仿真技术为代表的现代科学技术对合金材料成型工艺提出了更高、更新的要求,随着冶金企业数字化应用的不断深入,CAE的发展也逐渐占据了成型工艺设计与优化的高端位置。引进数字化模拟技术,利用CAE软件分析和优化生产制造工艺势在必行。CAE计算机模拟技术及相应的成形工艺仿真平台,无论是在提高生产率、保证产品质量,还是在降低成本,减轻劳动强度等方面,都有很大的优越性。
达索系统SIMULIA Abaqus的合金材料成型工艺数字化仿真解决方案,提供完整的成型工艺仿真体系,为企业提供全方位、全工艺的数值模拟分析方案,囊括了各种金属的多种成型工艺分析,包括锻造(自由锻、模锻)、特种成型(旋压)、轧制、挤压、机加工、冲压、拉拔、热处理等。基于有限元、离散元、光滑粒子等先进算法,对合金材料进行微观、介观到宏观的多尺度联合仿真,实现合金材料从研发设计到成型工艺的一体化分析,从而满足企业成型工艺复杂化及仿真分析的深层次需求。
1
轧制工艺分析
金属轧制工艺分析是一个典型的非线性问题,它需要考虑材料塑性、结构大变形和接触等所有非线性因素,SIMULIA Abaqus/Explicit提供了大变形和高度非线性过程分析的准静态方法,可以有效地模拟环轧、型轧、多道次轧制等等轧制工艺,可以进行板材、管材、线材、型材的轧制分析,以及考虑轧制过程中的弯辊力、轧辊横向移动、轧辊下压量变化等各方面工艺参数的影响。可以有效预测轧制过程中出现的折叠、凹坑、蝶形、壁厚不均、压扁、椭圆、锥度、塔型卷曲、流线紊乱等成型缺陷。
2
锻造工艺分析
SIMULIA Abaqus提供强大的处理非线性的功能,可以模拟锻造成型过程中的局部大位移、大转动,以及复杂的接触算法(包括刚体-刚体,刚体-变形体,变形体-变形体,其中刚体表面还可以是解析刚体面),可以进行多种锻造工艺的模拟,包括自由锻、模锻、辗环、特殊锻造(辊锻、锲横轧、径向锻造、液态模锻)等。通过仿真分析,能够了解金属塑性成形的全过程,包括金属成形过程中各阶段材料填充模具的情况、材料变形趋势、材料内部的应力、应变、应变速率、成形载荷和速度矢量场等信息。进而为锻造工艺和锻造模具的设计提供科学指导。
3
挤压工艺分析
可以对挤压过程进行模拟,快速计算型腔内的材料流动,预测成形缺陷以及挤压成形过程中的温度场,应力应变及材料流速变化,评估挤压模具设计。
4
旋压工艺分析
可方便设置多组旋轮的独立和同时运动,实现复杂的运动轨迹,从而对普通拉伸旋压、强力旋压、缩孔旋压等多种旋压工艺进行仿真分析,SIMULIA abaqus强大的自适应网格划分技术可充分保证模拟结果的精度,精确预测成形件的形状,应力应变分布,以及成形缺陷等,从而对工具旋转速度、进给深度、轧具尺寸等工艺参数进行优化。
5
机加工工艺分析
SIMULIA Abaqus强大的非线性分析模拟能力可以对铣、刨、钻、车削、剪切等多种机加工工艺进行仿真分析,可以实现机加工过程中的结构-热耦合分析,可以模拟切削屑的产生及流动状态以及获得机加工件在卸载后的变形和残余应力分布情况,可以对刀具的应力应变、强度、磨损情况、疲劳寿命进行分析,进而对刀具的结构和加工工艺参数,如进给量、切削角度、切削速度及深度等进行优化。
6
增材制造工艺分析
通过快速进行整体逐层仿真,预测金属零件的结构应力和变形,从而尽可能减少/避免变形,最大限度地降低残余应力,在此基础上优化堆积方向,优化支撑结构。除此之外,还可以考察热处理、基板和支撑结构切除之后部件的状态,帮助用户一次就成功生产出增材制造部件。
文章来源:《冶金与材料》 网址: http://www.yjyclzz.cn/zonghexinwen/2020/0715/367.html